Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 3): 114635, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309215

RESUMO

The emerging industrialization has resulted in the rapid growth of textile industries across the globe. The presence of xenobiotic pollutants in textile wastewater threatens the ecosystem. Applying different microbes (bacteria, fungi & algae) has paved the way for phytoremediation - the eco-friendly, cost-effective method. The present study focuses on the phytoremediation of reactive dyes - Reactive red, Reactive Brown & Reactive Black and Cr (VI) in synthetic textile wastewater using Salvinia sps. The mixed azo dyes of each 100 mg/L showed decolourization of 75 ± 0.5% and 82 ± 0.5% of removal of 20 mg/L of Cr (VI) after eight days of incubation in a phytoreactor setup. Chlorophyll analysis revealed the gradual decrease in the photosynthetic pigments during the remediation. The degraded metabolites were analyzed using FT-IR and showed the presence of aromatic amines on day zero, which were converted to aliphatic amines on day four. The GC-MS analysis revealed the disruption of -NN- bond, rupture of -CN- bond, scission of -N-N-bond, and loss of -SO3H from the Reactive Black dye leading to the formation of an intermediate p-Hydroxy phenylhydrazinyl. The rupture of Reactive red dye resulted in the formation of p-Hydrazinyl toluene sulphonic acid, Naphthyl amine -3,6-disulphonic acid and 8-Hydroxy Naphthyl amine -3,6-disulphonic acid. Decarboxylation, desulphonation, deoxygenation and deamination of Reactive Brown dye showed the presence of different metabolites and metabolic pathways were proposed for the reactive azo dyes which were phytoremediated.


Assuntos
Compostos Azo , Poluentes Químicos da Água , Compostos Azo/metabolismo , Águas Residuárias , Ecossistema , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Indústria Têxtil , Corantes/metabolismo , Biodegradação Ambiental , Têxteis , Aminas
2.
Environ Res ; 216(Pt 2): 114464, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208785

RESUMO

Accidents involving diesel oil spills are prevalent in sea- and coastal regions. Polycyclic aromatic hydrocarbons (PAHs) can be adsorbed in soil and constitute a persistent contaminant due to their poor water solubility and complex breakdown. PAHs pollution is a pervasive environmental concern that poses serious risks to human life and ecosystems. Thus, it is the need of the hour to degrade and decontaminate the toxic pollutant to save the environment. Among all the available techniques, microbial degradation of the PAHs is proving to be greatly beneficial and effective. Bioremediation overcomes the drawbacks of most physicochemical procedures by eliminating numerous organic pollutants at a lower cost in ambient circumstances and has therefore become a prominent remedial option for pollutant removal, including PAHs. In the present study, we have studied the degradation of Low molecular Weight and High Molecular Weight PAH in combination by bacterial strains isolated from a marine environment. Optimum pH, temperature, carbon, and nitrogen sources, NaCl concentrations were found for efficient degradation using the isolated bacterial strains. At 250 mg/L concentration of the PAH mixture an 89.5% degradation was observed. Vibrio algiolytcus strains were found to be potent halotolerant bacteria to degrade complex PAH into less toxic simple molecules. GC-MS and FTIR data were used to probe the pathway of degradation of PAH.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Ecossistema , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias , Hidrocarbonetos Aromáticos/metabolismo , Redes e Vias Metabólicas , Poluentes Ambientais/metabolismo , Poluentes do Solo/metabolismo
3.
Chemosphere ; 286(Pt 3): 131800, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34399258

RESUMO

Chemical fertilizers are used in modern agricultural practice to increase plant output. They possess anthropogenic compounds which are hazardous, result in poor soil quality, poor crop nutrition and pollutes the water table. Currently, food crops that lack in micro-nutrients (Zn, silicates and Se) can be enriched with micronutrients by use of fertilizers. Eco-friendly bio-fertilizers have been proved to provide a known population of microorganisms that create a mutual benefit to the plants & the rhizosphere soil. Nanomaterials are often used in plant fertilizer formulation, allowing for controlled release and targeted delivery of beneficial nanoscale components, as well as to boost plant production and reduce environmental pollutants. In the present study we identified a multipotent micronutrient solubilizing bacterium (MSB) - Pseudomonas gessardi and Pseudomonas azotoformans as a bio-fertiliser. Comparative study of the formulated MSB, with nanocomposite prepared with the soya chunks as natural carrier material and chemically synthesized cerium oxide was performed on the growth of fenugreek for its effectiveness. The SEM images of nanocomposite showed the non-uniform distribution of CeO2 in bio-inoculant with an average size of 25.24 nm. The current study deals with increase in the shoot and root length of the fenugreek plant with only 75 ppm of CeO2 in nanocomposite, thereby preventing bioaccumulation of Ce in soil. This work gives a potential use of CeO2 nanocomposite with MSB bio-inoculants which could be applied to soil deficient with the micronutrients that can enhance the crop yield.


Assuntos
Fertilizantes , Nanocompostos , Produtos Agrícolas , Fertilizantes/análise , Micronutrientes , Nutrientes , Pseudomonas , Solo , Microbiologia do Solo
4.
Environ Res ; 200: 111759, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310969

RESUMO

The recent upsurge of antibiotic-resistant infections has posed to be a serious health concern worldwide. In the present paper, the effect of shape & capping agent on the antibacterial activity (on Skin and Urinary Tract Infection (UTI) causing bacteria) of copper iodide (CuI) particles was probed. CuI synthesized without a capping agent was leaf-like, and that with one was prismatic in shape. XRD of the synthesized CuI confirmed their high crystalline nature and purity. The average crystallite sizes of capped and uncapped CuI were calculated to be 91.10 nm and 89.01 nm respectively from X-Ray powder diffraction data. The average particle size of capped CuI was found to be 492.7 nm and that of uncapped CuI was found to be 2.96 µm using HR-SEM analysis. The crystals obtained were further characterized using EDAX, FTIR spectroscopy and UV-Visible spectroscopy. Antibacterial activity of prismatic CuI capped with the flower extract of Hibiscus rosa-sinensis showed better activity than that of uncapped CuI. AFM analysis was carried out to confirm the proposed mechanism for antibacterial activity through the morphological changes on the bacterial cell wall in the presence of capped CuI. Molecular docking studies were performed to reaffirm the enhanced antibacterial activity of prismatic CuI further. The present study demonstrates the superior antibacterial propensity of prismatic CuI, consequently making it a potent antibacterial agent.


Assuntos
Antocianinas , Antibacterianos , Antocianinas/farmacologia , Antibacterianos/farmacologia , Cobre , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Mater Res Technol ; 15: 2102-2116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35864980

RESUMO

Microorganisms cause variety of diseases that constitutes a severe threat to mankind. Due to the upsurge of many infectious diseases, there is a high requirement and demand for the development of safety products finished with antimicrobial properties. The study involves the antimicrobial activity of natural cotton coated with copper iodide capped with Hibiscus rosa-sinensis L. flower extract (CuI-FE) which is rich in anthocyanin, cyanidin-3-sophoroside by ultrasonication method. The coated and uncoated cotton fabric was characterised through XRD, SEM, AFM, tensile strength and UV-Visible spectroscopic techniques. XRD confirmed the formation of CuI particles, SEM showed that CuI-FE was prismatic in shape. The average size of CuI-FE particles was found to be 552.45 nm. Anti-bacterial studies showed copper iodide particles to be a potent antimicrobial agent. AFM images confirmed the rupture of bacterial cell walls in the presence of prismatic CuI-FE. In-vitro cytotoxicity investigation of CuI-FE was performed against cancer and spleen cell lines to evaluate the cell viability. Cytotoxicity analysis revealed the IC50 value of 233.93 µg/mL in the presence of CuI-FE. Molecular docking study was also carried out to understand the interaction of CuI-FE with COVID-19 main protease. This paper has given an insight on the usage of CuI-FE coated on the cotton fabric that has proved to have strong inhibition against the nano ranged bacterial, cancerous cell line and a strong interaction with the COVID-19 protease. Such eco-friendly material will provide a safe environment even after the disposable of medical waste from the infectious diseases like influenza and current pandemic like COVID-19.

6.
RSC Adv ; 8(10): 5350-5361, 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35542426

RESUMO

ZnO nanorods were capped with a simple amino acid, viz., l-alanine to increase the carrier concentration and improve the performance of ZnO/CuI heterojunction diodes. The effect of l-alanine capping on the morphology, structural, optical, electrochemical and electrical properties of ZnO nanorods had been studied in detail. The stable structure with two equally strong Zn-O coordinate bonds predicted by density functional theory was in agreement with the experimental results of FTIR spectroscopy. Due to the presence of electron-releasing (+I effect) moieties in l-Alanine, the carrier concentration of capped ZnO nanorods was two orders of magnitude higher and the ZnO/CuI heterojunction device showed more than a two-fold increase in the photovoltaic power conversion efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...